微元法
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约8570字。
三、微元法
方法简介
微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
赛题精讲
例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。设灯距地面高为H ,求证人影的顶端C点是做匀速直线运动。
解析:该题不能用速度分解求解,考虑采用“微元法”。
设某一时间人经过AB处,再经过一微小过程Δt(Δt→0),则人由AB到达A′B′,人影顶端C点到达C′点,由于ΔSAA′= vΔt则人影顶端的移动速度:
vC = = = v
可见vc与所取时间Δt的长短无关,所以人影的顶端C点做匀速直线运动。
例2:如图3—2所示,一个半径为R的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B端恰与桌面不接触,铁链单位长度的质量为ρ 。试求铁链A端受的拉力T 。
解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况。在铁链上任取长为ΔL的一小段(微元)为研究对象,其受力分析如图3—2—甲所示。由于该元处于静止状态,所以受力平衡,在切线方向上应满足:
Tθ + ΔTθ = ΔGcosθ + Tθ ,ΔTθ = ΔGcosθ = ρgΔLcosθ
由于每段铁链沿切线向上的拉力比沿切线向下的拉力大ΔTθ ,所以整个铁链对A端的拉力是各段上ΔTθ的和,即:
T = ΣΔTθ = ΣρgΔLcosθ = ρgΣΔLcosθ
观察ΔLcosθ的意义,见图3—2—乙,由于Δθ很小,所以CD⊥OC ,∠OCE = θΔLcosθ表示ΔL在竖直方向上的投影ΔR ,所以ΣΔLcosθ = R ,可得铁链A端受的拉力:
T = ρgΣΔLcosθ = ρgR
例3:某行星围绕太阳C沿圆弧轨道运行,它的近日点A离太阳的距离为a ,行星经过近日点A时的速度为vA ,行星的远日点B离开太阳的距离为b ,如图3—3所示,求它经过远日点B时的速度vB的大小。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源