约8530字。
机械能
一、功和功率
1.功
功是力的空间积累效应。它和位移相对应(也和时间相对应)。计算功的方法有两种:
⑴按照定义求功。即:W=Fscosθ。在高中阶段,这种方法只适用于恒力做功。当时F做正功,当时F不做功,当时F做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。这里求得的功是该过程中外力对物体做的总功(或者说是合外力做的功)。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
例1. 如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θ角的位置。在此过程中,拉力F做的功各是多少?⑴用F缓慢地拉;⑵F为恒力;⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。可供选择的答案有
A. B. C. D.
解:⑴若用F缓慢地拉,则显然F为变力,只能用动能定理求解。F做的功等于该过程克服重力做的功。选D
⑵若F为恒力,则可以直接按定义求功。选B
⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D
在第三种情况下,由= ,可以得到,可见在摆角为时小球的速度最大。实际上,因为F与mg的合力也是恒力,而绳的拉力始终不做功,所以其效果相当于一个摆,我们可以把这样的装置叫做“歪摆”。
2.一对作用力和反作用力做功的特点
⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
3.功率
功率是描述做功快慢的物理量。
⑴功率的定义式:,所求出的功率是时间t内的平均功率。
⑵功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。
⑶重力的功率可表示为PG=mgvy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
资源评论
共有 0位用户发表了评论 查看完整内容我要评价此资源